
 

Multi-level caches; now, with respect to single level caches, we also we have said before 

that we have multiple cache hierarchies. Now we will talk about them here. The primary 

cache or level one cache in multi-level caches is attached to the processor; it is small bus 

but fast. Added to that we have a level 2 cache which services misses from the primary 

cache, it is typically larger in size, but also slower, but slower than the primary cache; 

however, being much faster than the main memory. So, the main memory then services 

L2 cache.  

So, what hierarchy do I have? I have the processor, then from the processor I have a 

small primary cache, typically these have these are separate data and instruction caches, 

then a basically I have a combined much bigger in size L2 cache, this will be these are 

L1 these both are L1 the L2 cache, and this is then attached to the main memory; which 

is much bigger. Now, in more in a more high end machines we also have 3 levels of 

cache. Typically, L1 or L2 are on chip, sometimes L3 cache is off chip in typically L3 

caches are off chip. 

(Refer Slide Time: 29:08) 
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Now, we will take an example on the use of multi-level caches. Particularly, we will see 

how multi-level caches are able to reduce miss penalties. Let us consider a CPU with a 

base CPI of one when all references hit the primary cache. So, cycles per instruction is 

one cycle cycles per instruction is 1. So, one cycle instruction execution when all 

references hit the primary cache, the clock rate is 4 gigahertz. Miss rate per instruction is 

2 percent. And so, 2 percent of all the instructions miss the primary cache.  

And I have the main memory access time so, time to go access the main memory and get 

data is 100 nanoseconds. And first we will consider the case when I have just one 

primary cache. So, what is the length of the clock cycle? I have a clock rate of 4 

gigahertz. So, the length of a clock cycle is 1 / 4 gigahertz = 0.25 nanoseconds. So, what 

is the miss penalty? So, the miss penalty will be given by miss for the penalty that for 

one for one miss is 100 nanoseconds. 

(Refer Slide Time: 30:35) 
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So, in terms of clock cycles, it will be 100 / 0.25 nanoseconds; which is equal to 400 

clock cycles. So, 100 nanoseconds to access main memory is 0.25 nanoseconds for one 

cycle. So, 100 nanoseconds divided by 0.25 equal to 400 cycles. So, when just see that 

when I hit the primary cache, if I can execute one instruction in one cycle. Now, if I have 

to go to the main memory, then I incur 400 cycles of penalty. The good thing is that, the 

good thing is that only 2 percent of these instructions miss the cache right. So, what will 

be the effective CPI?  

The effective CPI will be 1 when I have a cache hit plus so, I tried to I went to the cache, 

I saw that there is a cache miss. This will happen in only 2 percent of the cases or 0.02. 

So, for all these 0.02 or 2 percent cases I will incur 400 cycles of miss penalty. So, what 

will be the effective CPI? 1 + 0.02 × 400 = 9 cycles. Now let us assume that with this 

along with this cache we have added a L2 cache ok. The L2 cache has an access time of 

5 nanoseconds ok.  

To get to the L2 cache I require to get to the L2 cache and get the data I require 5 

nanoseconds. Now, the global miss rate to main memory is 0.5 percent. So, the number 

of the percentage of cases for which I miss the primary cache as well as the secondary 

cache means the L2 cache is only 0.5 percent. Now the miss penalty with the L2 cache is 

given by how many how much? So, 5 nano in the miss penalty with the L2 cache hit 

miss penalty with L2. 

853



(Refer Slide Time: 33:02) 

 

So, primary cache has missed, and in the L2 cache I have a hit. So, what will be the 

penalty? The penalty will be will be 5 nanoseconds divided by 0.25 nanoseconds. So, 5 

nanoseconds / 0.25 nanoseconds = 20 cycles. So, therefore, primary miss with L2 miss. 

So, when I have primary miss with L2 hit, I will have it will be 20 cycles.  

(Refer Slide Time: 33:30) 
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When I have a primary miss with L2 miss what will be the extra penalty? The extra 

penalty will be 420 cycles. Why? Because 400 cycles will be to get to the main memory 

and 20 cycles to get to the L2 cache; so, the total penalty when there is a primary miss 

with L2 miss is 420 cycles. Now what will be the effective CPI? The effective CPI will 

be 1 when there is a hit in the primary cache, plus 0.02 into 20 because 2 percent of my 

instructions miss the primary cache. So, 2 percent of 20 2 percent into 20 this many times 

I will have. And L2 cache and L2 cache access, out of these so, 2 percent of the times I 

will go to the L2 cache ok. Because I have a primary miss, 2 percent of the times I will 

have a primary miss, I will go to the L2 cache.  

For that I will have a overhead of this. And now out of this, accesses to the L2 cache 0.5 

percent will result in misses on the L2 cache. And for each of those times I will have to 

go to the main memory. So, 0.5 percent or 0.005 into 400 cycles will be the effective 

cost. So, the total effective CPI becomes 1 plus 2 percent of the times I missed the 

primary and go to the L2, and 0.005 times I miss the L2 and go to the main memory. So, 

the effective CPI will be 3.4. Now, the performance ratio without and with the secondary 

cache will therefore be 2.6. So, with the L2 cache, the processor is faster by 2.6 times. 

So, when I add the L2 cache my effective CPI reduces from 9 to 3.4 and therefore, my 

processor is 2.6 times faster. 
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Now, multi-level cache design issues. So, the focus of the primary cache is to minimize 

the hit time. Because I expect that each time I go for executing an instruction I will go to 

the cache and I have to fetch. So, I will try to minimize the amount of time I require to 

access the primary cache and get data. So, what is the focus of the L2 cache? The focus 

is on low miss rate; I want to avoid going to the main memory access. Why? Because we 

saw that only one cycle was for hit into the primary cache. Around 5 times was the hit 

with for a with respect to the primary cache with around 5 times was the cost of going to 

the L2 cache. And was 100 times was the cost of going to the main memory when I when 

I if I have to go to the main memory. 

So, hit time has overall less impact for the L2 cache, because why because, I go to the L 

2 cache when only when I have a miss on the primary cache. The result is that L1 cache 

is usually smaller, because I want to access it fast. And to get that I will have a smaller 

than a single level optimal optimally designed cache. So, if I have a single level 

optimally designed cache, I don’t have multiple caches with respect to that my L1 cache 

will typically be much smaller. Why because, I have the support of a big L2 cache. I 

want the L1 cache to be small and make the access times much lower much quicker.  

For the L1 cache block size will also be smaller compared to the L2 block size. Why this 

is also, that if the block sizes are larger my transfer times for the block becomes higher. 

So, we lower the block size lower at the transfer time. So, I will prefer a lower block size 

for the L1 cache. Now, also because my L1 cache size is smaller so, block size will also 

be smaller in turn. 

(Refer Slide Time: 38:03) 
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For more advanced CPUs; for example, out of order CPUs currently whatever we were 

studying where what in order CPU. So, whatever instructions are whatever machine 

instructions are placed to it they execute in order sequentially. So, in out of order CPUs 

the in the CPU has the ability to find independent instructions and execute out of order. 

So, what happens? Dependent instructions wait in reservation. So, I have an instruction 

subsequent to that I have other instructions which depend on my current instruction. 

But after that, I also have a few instructions with my which are independent of my 

current instruction. So, those independent instructions can continue, and I will have 

reduction in cache misses. So, in cache misses if I have to wait for cache misses my 

dependent instructions will wait. So, an out of order CPU can execute instructions during 

cache miss how? Dependent instructions will wait on the reservation station, and 

independent instructions will continue their execution. Effect of miss depends on 

program data flow as well. Now how the program data means what instructions are 

accessed after what? So, each program has control and data control flow graph. Now 

depending on that the data depending on the control the data will flow that the flow of 

data through the program is going to vary. 

Depending on that the sequence of instructions being executed is going to vary. And 

cache misses in that case becomes harder to analyze. And the way to do that is to 

simulate the whole system for more time constraint, more performance centric systems 

where the demand on performance predictability on performance becomes very critical, 
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we need to simulate the whole system sometimes to get a measure of what will be the 

penalty of misses corresponding to the execution of a program. Misses also depend on 

the access memory access patterns, the algorithm behavior here so, and the compiler 

optimizations for memory access. 

(Refer Slide Time: 40:26) 

 

So, today’s compilers do different types of optimizations to improve to improve cache 

hit rates, and reduce the number of misses. We will take an example to show how 

compiler optimizations can be used to improve cache hit rates. 

(Refer Slide Time: 40:50) 
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Now, we will take 2 problems, the first of which is as follows. Consider a 4 way set 

associative cache consisting of 128 lines with a line size of 64 words, the CPU generates 

20-bit address of a word in main memory. Determine the number of bits in the tag index 

and offset fields. So, I have a 4 way set associative cache consisting of 128 lines with a 

line size of 64 words. 

The CPU with so, with the line size of 64 words; so, first thing that comes to our mind is 

that, if the line size is 64 words, the block size in memory is also 64 words. That means, 

the number of if I have a word addressable memory, the number of words the number of 

bits required to access a word becomes 26, because 64 = 26. 

(Refer Slide Time: 41:57) 
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So, line size of cache = block size of main memory = 64 words or 26 words. So, the 

number of offset bits in a in the main memory address becomes 6 we get the first result 

for the offset. Then so the total number of bits for the tag and index fields within the 20-

bit address. So, I have a memory address of 20 bits, I have already said that 6 bits are 

used for my offset bits. So, the number of bits used for my tag plus index field will be  

20 - 6 = 14 bits. 

Now, the number of sets in cache now will become cache size divided by the number of 

ways. The number of sets in cache is cache size by number of ways. So, we said that the 

that my cache contains 128 lines. So, catch size is 128, I have a 4 way set associative 

cache so, number of ways is 4. So, the number of sets in cache is 128 / 4 or 27 / 22 = 25. 

Or therefore, I have 32 cache, 32 line 32 sets in the cache I have 32 sets in the cache. So, 

the number of bits required to index the cache will be given by 5. So, I have 5 bits in my 

index field of the main memory. So, the number of tag bits is given by 20 - 6 + 5 = 9, 6 

bits for my offset 5 bits for my index so, 20 - 6 + 5 so, 9 bits in the tag field. 

(Refer Slide Time: 43:44) 

860



 

Now, we take another example. A CPU has A 32-bit direct mapped cache with 128-byte 

line with 128-byte block size. So, block size is 128 byte so, line size is also 128 byte. 

Suppose, A is a 2 dimensional array of size 512 × 512 with elements that occupy 8 bytes 

each. So, consider the following 2 code segments P1 and P2. So, going before going to 

the code segment just my let me reiterate, I have a 32 bit 32 kilobyte direct mapped 

cache. So, 32 kilobyte direct mapped cache will mean. So, what will be the size of the 

cache? 32 × 210. 

So, 25 into 210; so, 215 bytes is the size of the cache. And I have a block size of 128 

bytes. So, 27 is my block size. And I have a 2 dimensional array of size 512 ×  512 of 8 

bytes each. So, what will be the total size of my of the array? 29 × 29 × 23; 9 + 9 + 3 so, 

221 bytes is the size of my data. So, the size of the array is 221 bytes. Now we come to 

these 2 code fragments consider the following 2 code segments P1 and P2. So, in P1 

what do I have? I have 2 nested arrays. 

So, the first goes from i = 0 to i = 512. The second goes from j = 0 to j < 512 j ++. And I 

access x = 2 so; I just sum up all the elements in the array here. So, 𝑥 = 𝑥 + 𝐴[𝑖][𝑗]. In 

P2 I have the same i and the same j, the only difference being that I do 𝑥 = 𝑥 + 𝐴[𝑗][𝑖]; 

that means, that this for this array I access the array row wise one row at a time ok. 

So, i = 0, for i = 0 I first go for with all j’s. Then i = 1 I go with all j’s from 0 to 512. So, 

I access one row at a time. In this case, I go column wise, why? Because I do 𝑥 = 𝑥 +
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𝐴[𝑗][𝑖]. So, first I access  A[0][0] then I access then I access a first I access A[1][0], 

sorry, A[0][0] then I access A[1][0], then I access A[2][0] finally, I access A[512][0], 

and then I go back to  A[0][1],  A[1][1], A[2][1], A[3][1] up to A[512][1]. Then I go to 

A[0][2], A[1][2] A[3][2] up to A[512][2], then I go to A[0][3], A[1][3] up to A[512][3] 

and so on. 

So, I access this array column wise. Now P1 and P2 are executed independently with the 

same initial state. Namely, the array A is not in the cache and i j x are in registers. Let the 

number of cache misses x cache misses experienced by P1 be M1 and that for P2 be M2. 

So, find the values of so I want to find the cache misses for P1 and P2, when I execute 

P1 and when I execute P2. 

(Refer Slide Time: 48:19) 

 

So, how do I find that out? So, I have A 32 kb direct mapped cache with 128-byte block 

size, the size of the array is 512 ×  512, 8 bytes each. P1 accesses the array row wise as 

we just discussed. So, block size is 128 bytes. So, the number of data elements in each 

block becomes 128 / 8 = 16. 

So, my one block or one line contains 128 bytes. And I said that each data element is 8 

bytes. So, the number of distinct data elements in each block is given by 128 / 8 = 16. 

Then the number of blocks required to store all the data will be given by; so, what is the 

total number of elements I have? 512 × 512 ok. 
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So, the number of blocks and I said that so, these are how many elements? The number 

of elements are 512 ×  512. And in each block I can store 16 elements. So, the number of 

blocks that will be required to store all my data is given by 512 ×  512 by 16; that is, 29 

into 29 / 24. So, 218 / 24 which is 214 and 214 = 16384 blocks. Now I am accessing for 

P1, for P1 I am accessing the elements row wise. So, what happens? When I accessed 

A[0][0], I incurred a miss, and I brought that block of 16, I brought the block of 16 bytes 

to the sorry, 16 elements to the main memory. I brought in the block of 16 elements.  

Now this 16 elements what does it contain? A[0][0]  [0][1], [0][2] [0][3] up to [0] [15] 

ok; now if we see if you if you just go and look back at the at the code for P1, we see that 

I first access A[0][0], then I acts as 01, I acts as 02, I acts as 03 up to 0 15. So, there will 

be a miss for 00, but then for from 01 to 0 15 there will be no misses because, all these 

data has been brought into cache during the first miss on A[0][0]. So, in the number of 

misses will be equal to the number of blocks as accessed. So, all blocks are required to 

be accessed at least once, and there will be one miss per block. So, therefore, the number 

of misses will be 16384 now; however, P2 accesses the array column wise. As I said I 

access A[0][0] I incur a miss, then I have what I have brought into cache is A[0][1] to 

A[0][15]. 

But what do I access next? I access A[j][i]; that means, I am accessing A[1][0] next. 

A[1][0] is again not in cache and therefore, there will be again another miss in the cache. 

So, basically if we see all the accesses to the cache will result in misses. So, M2 will be 

will be the number of misses will be all the accesses, all the accesses will result in misses 

and it will be given by this value; which is which is 512 × 512; that means, 29 ×  29 or 

218. So, this is equal to 218. This will be the total number of misses. So, M1 is 214 and 

M2 is 218. 

With this we come to the end of this lecture. 
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